Practical DoS Attacks on Embedded Networks
in Commercial Vehicles

Subhojeet Mukherjee!', Hossein Shirazi', Indrakshi Ray'®), Jeremy Daily?,
and Rose Gamble?

! Colorado State University, Fort Collins, CO 80523, USA
{subhomuk,shirazi,iray}@cs.colostate.edu
2 University of Tulsa, Tulsa, OK 74104, USA
{jeremy-daily,gamble}@utulsa.edu

Abstract. The Controller Area Network (CAN) protocol has become
the primary choice for in-vehicle communications for passenger cars and
commercial vehicles. However, it is possible for malicious adversaries to
cause major damage by exploiting flaws in the CAN protocol design or
implementation. Researchers have shown that an attacker can remotely
inject malicious messages into the CAN network in order to disrupt
or alter normal vehicle behavior. Some of these attacks can lead to
catastrophic consequences for both the vehicle and the driver. Although
there are several defense techniques against CAN based attacks, attack
surfaces like physically and remotely controllable Electronic Control
Units (ECUs) can be used to launch attacks on protocols running on
top of the CAN network, such as the SAE J1939 protocol. Commercial
vehicles adhere to the SAE J1939 standards that make use of the CAN
protocol for physical communication and that are modeled in a manner
similar to that of the ISO/OSI 7 layer protocol stack. We posit that the
J1939 standards can be subjected to attacks similar to those that have
been launched successfully on the OSI layer protocols. Towards this end,
we demonstrate how such attacks can be performed on a test-bed having
3 J1939 speaking ECUs connected via a single high-speed CAN bus. Our
main goal is to show that the regular operations performed by the J1939
speaking ECUs can be disrupted by manipulating the packet exchange
protocols and specifications made by J1939 data-link layer standards.
The list of attacks documented in this paper is not comprehensive but
given the homogeneous and ubiquitous usage of J1939 standards in com-
mercial vehicles we believe these attacks, along with newer attacks intro-
duced in the future, can cause widespread damage in the heavy vehicle
industry, if not mitigated pro-actively.

Keywords: Security - Vulnerability - CAN - J1939 - Data-link + Denial-
of-Service

1 Introduction and Previous Efforts

Gone are the days when vehicles used to be driven solely by human-mechanical
interactions. Since the advent of the Controller Area Network (CAN) in the
© Springer International Publishing AG 2016

I. Ray et al. (Eds.): ICISS 2016, LNCS 10063, pp. 23-42, 2016.
DOT: 10.1007/978-3-319-49806-5_2

24 S. Mukherjee et al.

early 1980s vehicle manufacturers have adopted a more cyber-physical app-
roach to driving. Majority of the functions performed by vehicular mechanics
are now mediated through embedded devices referred to as Electronic Control
Units (ECUs). The ECUs help in executing critical (vehicle propagation, mainte-
nance etc.) as-well as less critical (driver comfort, entertainment etc.) vehicular
functions. While performing these functions, the ECUs interact with each other
using fixed-length packets over the CAN bus. The CAN protocol follows a set of
specifications [1] that enables it to support high-speed communications over a
2-wire serial broadcast bus. In addition, CAN allows assigning priorities to indi-
vidual messages, thereby permitting higher priority messages to pass through at
the time of contention. This not only allows ECUs to perform time critical func-
tions like throttle and brake control but also perform less important functions
like telematics and comfort management.

The CAN protocol facilitates in-vehicle message exchange. It does not how-
ever specify what messages are exchanged and how they are used by ECUs. It is
often the responsibility of the vehicle manufacturer to implement protocols and
standards which provide these functionalities. While passenger car manufactur-
ers opt for proprietary standards, commercial vehicle vendors adopt a common
set of standards specified by the SAE International. The standards are unified
under the common naming convention SAE J1939 [9]. SAE J1939 is modeled on
the ISO/OSI network protocol stack with the physical layer functionalities being
realized by the CAN protocol. Together, the CAN protocol and J1939 specifi-
cation sets help in accomplishing complex mechanical and electrical functions
within a commercial vehicle.

Like other frequently used communication protocols and standards, CAN and
J1939 are also accompanied by their fair share of security pitfalls. While attacks
on the CAN protocol have been researched extensively of late [4,6,8,12,13], secu-
rity aspects of the SAE J1939 specifications have been largely overlooked. More
recently, Burakova et al. [2] attempted to replicate consumer vehicle specific
attacks on their heavier counterparts by cleverly crafting, replaying and spoof-
ing J1939 messages. The authors were successful in manipulating both critical
(e.g. Engine RPM) and less critical features (e.g. Oil Pressure Gauge) to their
desired levels. However, their work did not exploit any specifications made by the
J1939 standards. In other words, these attacks are not specific to just trucks or
other vehicles complying J1939 communications. In fact, by altering specifics of
the attack vectors, similar attacks can be launched on consumer vehicles. Thus,
to the best of our knowledge, this is the first work focused on discussing weak-
nesses in the SAE J1939 specifications. SAE J1939 is a collection of standards
describing various functionalities at different layers. Currently, there are 17 such
standards and each standard is a collection of different protocols and specifica-
tions. Documenting all possible attacks on J1939 is a time-consuming process. In
order to scope our work, we limit our attacks to exploiting weaknesses in the the
data-link layer protocols specified in the SAE J1939-21 standard document [10].
The reader can view this work as a proof-of-concept aimed at establishing the

Practical DoS Attacks on Embedded Networks in Commercial Vehicles 25

fact that attackers can exploit the protocol specified in the SAE J1939 standards
to cause major damage.

Hoppe et al. [4] performed a practical security analysis of the CAN network
and identified the basic weaknesses in the CAN protocol which allow targeted
attacks to succeed. These weaknesses were modeled on the five central infor-
mation security concerns, namely, confidentiality, integrity, availability, authen-
ticity, and non-repudiation. After analyzing the majority of the current CAN
security literature, we conclude that physical damage can be caused to the vehi-
cle and the driver by exploiting the lack of integrity, availability, and authenticity
services offered in the CAN bus. Deceiving ECUs to perform unintended actions
(integrity and/or authenticity issues) or disabling the ability of the ECUs to
perform regular tasks (availability issues) can result in problematic or undesir-
able consequences. Since J1939 uses CAN services at the physical layer, it is also
susceptible to attacks launched by exploiting integrity, availability, and authen-
ticity deficiencies. For example, J1939 allows some ECUs to command other
ECUs to perform critical activities like transmission and torque/speed control.
Impersonating as the former can allow attackers to control/modulate these vehi-
cle critical functions. We refer to this as an injection attack. Similarly, attackers
can inhibit the functionalities offered by one or more ECUs by overwhelming
the performance capabilities of the ECUs or the bus. We refer to such an attack
as denial-of-service (DoS) attack as it adversely affects the services provided
by the ECUs or the CAN bus. Although both these attacks can lead to fatal
consequences, in this work we limit out exploration to DoS attacks on the SAE
J1939 data-link layer protocol. This is because injection attacks can be launched
straightforwardly by searching for command messages from the J1939 Digital
Annex [11] and injecting them into the CAN bus. On the contrary, DoS attacks
require studying the workflow of the SAE J1939 data-link layer protocols, find-
ing suitable attack vectors and drawing inferences by analytically observing of
the bus traffic. The scientific challenges involved in executing DoS attacks make
it more interesting from a research perspective compared to injection attacks.

Our goal in this paper is to demonstrate techniques by which the regular
work-flow of the J1939 data-link layer protocols can be disrupted. However, we
do not discuss the eventual effect of attack on the mechanical behavior of the
vehicle. This is because we assume that some normal vehicular functions depend
entirely on the seamless accomplishment of all the protocols involved in executing
them and any disparity observed in the protocol flow should cause some adverse
effect on the mechanical behavior of the vehicle. Documenting the exact effect
is beyond the scope of this work.

The rest of the paper is organized as follows. Section?2 provides a brief
overview of CAN protocol and J1939 standards with emphasis on the J1939
data-link layer [10]. Section 3 discusses our threat model, a concise categoriza-
tion of the attacks performed in this paper, and the experimental setup used.
Section4 documents and analyzes three separate DoS attacks. Each attack is
complemented with suggested mitigation techniques. Section5 concludes the

26 S. Mukherjee et al.

A

Application

Network

Data Link | J1939 PDU | | 1939 PDU | | J1939 PDU |

Physical/CAN
\{ | CAN Frame | CAN Frame | CAN Frame
Fig. 1. J1939-OSI Model
ECU-1 ECU-2 ECU-3

120 ohn# #120 ohm

Fig. 2. Example CAN network

paper with an overview of the results achieved and indicates the future direction
of advancements for both attack and defense strategies for the J1939 standards.

2 Background

Embedded communications in commercial vehicles are facilitated by the SAE
J1939 [9] standards. As shown in Fig. 1, J1939 is modeled on the ISO/OSI pro-
tocol stack. A J1939 packet is created at the applications layer. As a packet
moves down the layers it is optionally split up into two or more protocol data
units (PDUs) at the data-link layer. This is because the physical layer opera-
tions are guided by the CAN protocol which allows a maximum of 8 data bytes
in one CAN frame. Finally, the CAN frames are exchanged using CAN protocol
specifications.

2.1 The Physical (CAN) Layer

Functions at the lowermost layer the of the J1939 protocol stack are handled
by the CAN protocol [1]. The protocol handles transmission of J1939 packets
over a 2-wire multi-master serial bus. CAN is a broadcast protocol and does not
specify unicast message transfer. This means every node (ECU) on a CAN bus

Practical DoS Attacks on Embedded Networks in Commercial Vehicles 27

Identifier Data
Priority ~ EDP DP PF PS SA
3 hits 1 bit 1 bit 8 bits 8 bits 8 bits Variable size

Fig. 3. J1939 message format

can see messages transmitted by every other node. Protocols running on top of
the CAN bus, however, can implement functionalities to accomplish point-to-
point message transfer. J1939, as will be seen later in this section, uses source
and destination address fields to specify senders and receivers of CAN frames.
An example CAN network is shown in Fig.2. ECUs can transmit messages on
the bus following a CSMA/CD bus access method. This means the ECUs can
transmit messages on the bus only when it is free. If two ECUs transmit on a free
bus at the same time, the protocol arbitrates between the two messages using the
CAN message identifier. The CAN identifier is an additional 11 (standard) or
32 (extended) bit field prepended to an 8 byte CAN message. As it will be seen
later, J1939 recommends the 29 bit identifier, hence the extended CAN identifier
is used for arbitration purposes. Finally, in CAN bus terminology a 0 (dominant
bit) on the bus is considered to be of higher priority than 1 (a recessive bit).
This means, on the CAN bus, a message whose prefix is “000” overwrites the
one whose prefix is “001”.

2.2 J1939 Packet Formatting

The general format of the J1939 message is shown in Fig.3. A single J1939
message can be partitioned into a 29 bit identifier (ID) section and variable size
data section. Since the CAN protocol allows only 8 bytes of data in one frame,
the variable size data section is broken up into 8 byte packets and appended
with the identifier to form a J1939 PDU. At the physical layer, a few more CAN
specific bits are added to the J1939 PDU and transmitted on the bus as a CAN
frame.

Identifier Field. The J1939 identifier is divided into 6 sub-fields.

— Priority: The 3 bit priority field is used to as a base for the CAN arbitration
scheme. Priorities can vary from 0003 (019) to 1112 (710). The J1939 standard
assigns a default priority of 0112 (319) to vehicle control messages and 110z
(610) to all other messages. The priority is ultimately specified by the original
equipment manufacturer (OEM).

— Extended Data Page (EDP): Currently the EDP bit is set to 0z (019) for
all J1939 messages.

28 S. Mukherjee et al.

Digital Annex Entry

PGN DefaultPriority ~ EDP DP PF PS
32512 6 0 0 127 DA
Padding —_1 SA
000 110 0 0 01111111 00000000 11111001
N
18 7F 00 F9

Fig. 4. Generating a J1939 identifier from the digital annex

— Data Page (DP): The DP bit can be set to either 02 (019) or 13 (110). The
actual value of the DP bit for a particular message can be obtained from the
J1939 Digital Annex [11].

— PDU Format (PF) and PDU Specific (PS): In terms of message commu-
nication the PF and PS are the most significant bit fields. When put together
along with EDP and DP they evaluate to what is referred to as the Parameter
Group Number (PGN). PGNs are used to group J1939 messages according to
their functionality. For example, messages related to torque or speed control
are assigned the PGN 01 (00001¢6), whereas those related to tire sensor identi-
fication are assigned the PGN 325121 (7F'0016). When encoded hexadecimals,
the first ten bits of the PGN represent the PF and the last 8 bits represent
the PS. When PF values are less than 2401y (F06) the PS field is used to
specify the address of the intended receiver.

— Source Address (SA): The source address field is used to specify the address
of the sender. The source address field can be used to filter and process
messages at the hardware level to avoid overloading the ECU firmware with
unnecessary message processing. Source addresses can range from 000000005
(010/0016) to 111111112 (25510/FF16) The J1939 D1g1ta1 Annex [11] contains
a list of suggested source address assigned to various functional ECUs.

To summarize, Fig. 4 shows how a J1939 identifier is constructed from J1939
standard entries. An additional 3 bit padding is added to convert the identifier
into 32 bit CAN arbitration field. Since the PF is less than 240, the PS field
denotes the receiver of the message (0016) which in this case is the Engine#1
ECU. The SA field is used to denote the sender F'91g which is the off-board
diagnostic service tool.

Data Field. J1939 message data field is constructed using Suspect Parameter
Numbers (SPNs). Each PGN is associated with a set of SPNs. An SPN definition
determines how a message (encoded in bits) belonging to a particular PGN is

Practical DoS Attacks on Embedded Networks in Commercial Vehicles 29

converted into application readable information. For example, the first 2 least
significant bits in PGN 32512, data is assigned the SPN 695,¢. According to the
SPN definition, the 2 least significant bits denote the Engine Override Control
Mode and can assume any of 4 (22) states. The attacks demonstrated in this
paper do not make use of SPN numbers and hence we do not discuss this further.

2.3 Message Transmission Rates

J1939 recommends transmitting messages at various rates depending on the
PGN Transmission Rate specification available in the digital annex [11]. A broad
categorization of the transmission rates is presented below. The categorization
was done by thoroughly observing the Transmission Rate specification available
in the digital annex.

— Periodic: Transmitted at various time intervals (seconds or milliseconds) as
specified in the J1939 standards.

— On-Request: Transmitted on receiving a request.

— Event-Based: Transmitted at the occurrence of a specific event or interrupt.

— Manufacturer Defined: Transmission rates are defined by the manufacturer.

— Requirement Based: Transmitted only if required.

— Conditional: Dependent on ECU parameters like Engine Speed or other fac-
tors like state change.

— Unspecified: Transmission rates are not specified for these PGNs.

— Hybrid: Any combination of the above categories. For example, the time
interval of periodically transmitted messages can vary depending on condi-
tional factors.

2.4 J1939 Data-Link Layer

Figure 1 shows 4 layers in a J1939 protocol stack. Each of these layers has one
or more standard documentations associated with them. The documentations
can be found in SAE standards repository (http://www.sae.org). The attacks
documented in this paper employ extensive usage of the request message doc-
umented in the J1939-21 (data-link layer) [10] standard. The request message
(PGN 5990410/ EA0016) is used to request a particular PGN from a single or a
group of ECUs on the bus. Since the PF (23419/FE A;¢) for the request PGN is less
than 24019 (F016), the PS field is used to specify the address of the intended
receiver of this message. This address can be destination specific like Engine
(0016), Brake (0B1¢) or global broadcast (F'Fig). A destination specific request
is answered by the receiver with either the requested PGN or a negative acknowl-
edgment. Acknowledgment messages are assigned to the PGN 593921 (E8001¢).
As with the request PGN the acknowledgment can also be destination specific
or broadcast. The first byte in the data field of an acknowledgment messages is
the control byte. The mapping for the control byte values and the information
conveyed by the respective acknowledgment messages are shown below:

http://www.sae.org

30 S. Mukherjee et al.

Table 1. Frequently Used PGNs

Identifier Data Bytes
Label [Sub |PGN|PF| PS [Default | 1 2 3 | 4] 5 [0 8
Label Priority ‘ ‘ ‘ ‘
Request N/A |EAO00|EA |Dest- 6 Requested PGN in reverse N/A
Addr byte order
Connection |Request |EC00|EC|Dest- 7 10 Total number of |Total |Max Requested
Manage- to Addr bytes to be trans- [num- [number |[PGN in
ment Send ferred ber of|of pack-|reverse byte

pack- |ets to be|order
ets sent in
to be|response

sent |to 1
CTS:
FF for
any
Connection |Clear EC00|EC|Dest- 7 11 Number [Next se-| FF FF |Requested
Man- to Addr of Pack-|quence PGN in
age- Send ets that|number reverse
ment can be|to send byte
send order
Data Trans-| N/A |EBO00|EB|Dest- 7 sequence Data

fer Addr number

— 019 (0016): Positive Acknowledgment (ACK).

110 (0116): Negative Acknowledgment (NACK).

210 (0216): Access denied.

— 310 (0316): Cannot respond.

— 419 (0416) — 255109 (F'F16): Reserved for SAE assignment.

Requested PGNs are transferred either as a single packet (with 8 bytes or
less of data) or multiple packets (with more than 8 bytes of data). In the sec-
ond case, SAE recommends implementing a connection oriented multi-packet
data transfer. A destination specific multi-packet data transfer (Fig.5) starts
by initiating a request (PGN 59904;0/FE A0016). The requested party attempts
to open a connection by sending a Request to Send (RTS) message (PGN
6041610/ EC0016). In response, the requester sends a Clear to Send (CTS)
message (PGN 6041619/FC00;6). Upon receiving the CTS the requested party
starts sending the data using the data transfer PGN (6016010/EB00:6). On
successful completion of the message transfer, the requester sends an End of
Message Acknowledgment (EndOfMsgACK) (PGN 6041619/EC0016). A sum-
mary of the PGNs used in our attacks (request, connection management and
destination specific data-transfer) is shown in Table 1.

3 Preliminaries

The contents of this section convey the preparatory information for the attacks
demonstrated in the next section. This includes the threat model under which
our attacks were performed, a concise categorization of our attacks, and the
experiment set-up we used to conduct the DoS attacks.

Practical DoS Attacks on Embedded Networks in Commercial Vehicles 31
Requester Responder

W.

Connection
Request to Send i
Clear to Send

Data -seq 1
Data -seq 2
Data -seq 3

Fig. 5. Requested Multi-packet PGN transfer

Table 2. Attack Categorization

Attack Name Type of Message Exploit
Request | Connection | Implementation | Specification
Management | Issues Issues
Request Overload Yes No No Yes
False RTS Yes Yes Yes Yes
Connection Exhaustion | Yes Yes No Yes

3.1 Threat Model

For the purpose of this work, we assume an active adversary with direct access
to the CAN bus. By active, we mean that the adversary is capable of inject-
ing any message into the CAN bus and disrupting the regular operations. The
capabilities of the adversary are however restrained by the computational power
of the device which is used to inject these messages. This device can be physi-
cally attached to the bus (a compromised Entertainment ECU or a pass through
device attached to the OBD-II port) or connected remotely to wireless interfaces
on the vehicle bus such as the telematics units, Tire Pressure Monitoring System
(TPMS) or Bluetooth unit [3]. The use of any of these attack surfaces constricts
the attackers resource significantly, either due to low computation power or con-
siderable network delay.

32 S. Mukherjee et al.

Engine Control Module

Engine #1 Retarder - Engine Brake System Controller
SRC-ADDR : 00 SRC-ADDR : OF SRC-ADDR : 0B BB1 BB2

$ 250 Kbps #

Fig. 6. Experiment test-bed schematic

3.2 Attack Categorization

Three separate DoS attacks are demonstrated in Sect.4 of this paper. In this
subsection, we attempt to classify the attacks on the basis of a few factors: type
of message (PGN) used for attack and exploit (flaws in implementation and/or
specifications). The categorization is shown in Table 2. The leftmost column of
the table, lists the three attacks namely, Request Overload, False RTS and
Connection Exhaustion. The details about execution and findings from these
attacks are reported in the next Sect. 4.

3.3 Experiment Test-Bed

All attacks were conducted on a test-bed consisting of a single high-speed CAN
bus with a baud rate of 250 kbps. The normal bus load was measured at 14%-15%
using the canbusload utility from the can-utils [7] program built for SocketCAN
in Linux. A schematic of the test-bed is shown in Fig. 6. The test-bed consisted of
an Engine Control Module (ECM) and a standalone Brake Controller (0Bi¢).
The ECM includes an Engine-#1 ECU (SRC: 00;6) and a Retarder-Engine
ECU (SRC: 0F16)!. The make and model of the ECUs are not revealed to protect
vendor reputation.

Figure 6 also shows two BeagleBone Black (BB1 and BB2) devices with cus-
tom built heavy vehicle communication protocol transceivers. The BeagleBones
act as regular ECUs or other embedded devices connected to the bus. All
attacks were performed using these devices. Both the BeagleBones hosted 32
bit Ubuntu@Linux operating systems running on an ARM processor with 500
MB of RAM. Although we had can-utils [7] at our disposal we preferred to use
the python3 implementation? of the the SocketCAN driver [5] to conduct the
attacks. This is because SocketCAN offered much more flexibility in implement-
ing a morphed version of the J1939 data-link layer protocols for the purpose of
the attacks.

Ten different snapshots of the CAN bus traffic was taken for 10s each. It
was observed that the traffic pattern outlined in Table 3 was exactly same for

! The names of the ECUs are obtained from the J1939 Digital Annex Source Address
Tab.
2 http://python-can.readthedocs.io/en /latest /socketcan_native.html.

http://python-can.readthedocs.io/en/latest/socketcan_native.html

Practical DoS Attacks on Embedded Networks in Commercial Vehicles 33

Table 3. Test-bed traffic

Identifier | Priority | PGN | SRC | Count | Measured Matching
interval in ms Annexed Interval
in ms
0CF00300 | High 61443 1 00 | 200 50 50
0CF00400 | High 61444 /100 | 500 20 20
18EOFF00 | Low 57344 | 00 10 1000 1000
18EBFF00 | Low 60160 | 00 | 130 76.9230769231 | Prop
18EBFFOF | Low 60160 | OF 6 1666.6666666667 | Prop
18ECFF00 | Low 60416 | 00 12 833.3333333333 | Prop
18ECFFOF | Low 60416 | OF 2 5000 Prop
18F0000F | Low 61440 | OF | 100 100 100
18F00100 | Low 61441 /00 | 100 100 100
18F0010B | Low 61441 | 0B 99 100 100
18FD7CO00 | Low 64886 | 00 10 1000 Prop
18FDB300 | Low 64947 | 00 20 500 500
18FDB400 | Low 64948 | 00 20 500 500
18FEBDO0 | Low 65213 | 00 10 1000 1000
18FEBFOB | Low 65215 | 0B | 100 100 100
18FEC100 | Low 65217 | 00 10 1000 1000
18FEDFO00 | Low 65247 /100 | 500 20 Prop
18FEE000 | Low 65248 | 00 | 100 100 100
18FEE400 | Low 65252 | 00 10 1000 1000
18FEEEQ0 | Low 65262 | 00 10 1000 1000
18FEEFO00 | Low 65263 | 00 20 500 500
18FEF000 | Low 65264 | 00 | 100 100 100
18FEF100 | Low 65265 | 00 | 100 100 100
18FEF200 | Low 65266 | 00 | 100 100 100
18FEF500 | Low 65269 | 00 10 1000 1000
18FEF600 | Low 65270 | 00 20 500 500
18FEFT700 | Low 65271 | 00 10 1000 1000
18FEFFO00 | Low 65279 | 00 1 10000 10000

all 10 snapshots. Only two distinct priorities were observed on the bus: 0115/31
(0C16 with padding) and 1105/61¢ (1816 with padding). The Measured Intervals
were calculated by dividing 10000 ms (10s) by the individual message counts.
The Matching Annexed Intervals were obtained for each observed PGN from
the digital annex [11]. If the Matching Annexed Intervals did not match the

34 S. Mukherjee et al.

Measured Intervals it was assumed that they were pre-programmed by the vendor
and marked “Prop”.

4 Attacks

In our pursuit to find weaknesses in the J1939 data-link layer specifications, we
performed three separate DoS attacks that were briefly introduced in Sect. 3.2.
We now present the details of the attacks. The documentation process for each
attack is subdivided into 5 components:

1. Background Theory: We begin by introducing the core J1939 concept
exploited for the attack.

2. Proposed Attack: An attack is proposed based on the background theory.

Execution: The attack is executed.

4. Observation and Analysis: The effect of the attack is evaluated by study-
ing the network traffic and optionally using fitting metrics and charts. If
required statistical significance testing is performed to gauge the truth value
(Success or Failure) of the attack.

5. Suggested Mitigation Techniques: Finally, we suggest some probable mit-
igation techniques for the described attack.

@

4.1 Request Overload

Background Theory. The J1939-21 standard suggests an algorithm to filter
received messages at the microprocessor level. The intended use of this algorithm
is to reduce the load on the application. For a destination specific request, the
filtering algorithm recommends queuing message bytes (for further processing)
if the destination address in the message identifier matches the device’s source
address. Once a request is queued, the ECU is expected to see if the PGN is
supported by it. If supported, the ECU should reply back with the PGN.

Proposed Attack. Sending a large volume of request messages for a supported
PGN should increase the computational load of the recipient ECU to an extent
where it might not be able to perform regular activities like transmitting periodic
messages.

Execution. We wrote a Python script to send repeated requests for ECU com-
ponent id (PGN 6525919/ EBF Ejg) to the Engine-#1 ECU (refer to Fig. 6). We
chose the Engine ECU as the target because we wanted to reduce the count of
high-priority messages on the bus and the normal bus traffic from Table 3 shows
that Engine-#1 is the only ECU transmitting high priority (0C1¢) messages. The
component id is a multi-packet (greater than 8 bytes) PGN. Responding to the
request thus requires the ECU to perform slightly more activity than responding
with a single-packet PGN.

Practical DoS Attacks on Embedded Networks in Commercial Vehicles 35

Our attack script expected three arguments (used as independent variables
for further analysis), namely, (1) number of concurrent threads, (2) injection time
interval and (3) source address. The first two arguments allowed us to strengthen
the magnitude of the attack. The final argument was varied to spoof the sender
of the injected message. Three values were chosen for the spoofed address: 0B¢
(Brake Controller), 0016 (Engine-#1) and F'9;6 (Off Board Diagnostic Service
Tool). The idea was to observe whether replies sent by the Engine-#1 to the
brake, to itself or to a non-existent ECU alters its behavior in any way.

Observation and Analysis. As seen from Fig.7 and Table4, performing the
attack caused regular messages on the bus to drop significantly. High Priority
message (blue curve) count dropped by an average of 46.64 % with the maximum
drop obtained at spoofed-SRC: F9, num-thread: 8, interval: 1.2. Low priority
message count, on the other hand, dropped significantly for both the Engine-
#1 (SRC: 0016) and the Retarder (SRC: 0F6) although the average drop was
almost equal (7 65 %) for both. The peak drops for Engine-#1 (SRC: 0016) and
Retarder were observed at the following points spoofed-SRC: 0B, num-thread:
8, interval: 1.2 and spoofed-SRC: F9, num-thread: 8, interval: 1.2 respectively.
The least amount of drop in count (for orange, red and blue lines from Fig.7)
was observed at the point spoofed-SRC: F9, num-thread: 4, interval: 0.4.

100 —_ High Priority - SRC 00
Low Priority SRC 00
"~ —— Low Priority - SRC 0B
~— Low Priority - SRC OF

g D9 M0 M0 %0, %, ., %., %., %., %. %, %

2., %2, 0. 09, 26, 6. 0,
22 70g 08 1o 0g 0 L2

%., %., %., %., %, %, %, %, %, "0, B, 9, B, R "

p
405705723705 ™05 72,50, 5050 500, 00570 570, 0570 %0, B0 B0 s R0 R0
Fig. 7. Request overload effect on normal traffic: percentage reduction in regular mes-

sage volume (Color figure online)

Pearson correlation coefficients for each independent variable (argument) and
the reduction percentages for high priority messages (high priority messages were
chosen for this purpose since they are hard to suppress on a CAN bus) are shown
below:

— Source: —0.01 (negative weak correlation). As the source address increases
from 00 to F9, reduction percentages drop [weakly].

36 S. Mukherjee et al.

Table 4. Request overload effect on normal traffic: percentage reduction in regular

message volume [Raw Statistics]
Attack Parameters Average Message Count per Source Address

00 0B OF
Source | Thread | Interval | High P Low P Low P Low P
@ @ Count | Decrease | Count | Decrease | Count | Decrease | Count | Decrease
(%) (%) (%) (%)

0B 1 0.4 216 38.29 257 60.16 117 -17 23 56.6
0B 1 0.8 153 56.29 114 82.33 120 -20 12 77.36
0B 1 1.2 123 64.86 86 86.67 140 -40 8 84.91
0B 4 0.4 297 15.14 502 22.17 111 -11 40 24.53
0B 4 0.8 221 36.86 319 50.54 119 -19 28 47.17
0B 4 1.2 197 43.71 219 66.05 122 -22 17 67.92
0B 8 0.4 215 38.57 285 55.81 125 -25 21 60.38
0B 8 0.8 115 67.14 98 84.81 129 -29 5 90.57
0B 8 1.2 117 66.5 46 92.87 118 -18 8 84.91
F9 1 0.4 235 32.86 302 53.18 118 -18 27 49.06
F9 1 0.8 136 61.14 118 81.7 128 -28 6 88.6
F9 1 1.2 121 66.4 75 88.37 119 -19 5 90.6
F9 4 0.4 310 11.43 524 18.76 109 -9 45 15.09
F9 4 0.8 239 31.71 317 50.85 118 -18 29 45.28
F9 4 1.2 207 40.86 253 60.78 130 -30 20 62.26
F9 8 0.4 221 36.86 301 53.33 125 -25 21 60.38
F9 8 0.8 131 62.57 118 81.7 127 -27 8 84.91
F9 8 1.2 104 70.2 63 90.23 128 -28 6 88.7
00 1 0.4 223 36.29 309 52.09 129 -29 25 52.83
00 1 0.8 145 58.57 106 83.5 120 -20 86.7
00 1 1.2 116 66.86 100 84.5 130 -30 6 88.7
00 4 0.4 283 19.14 465 27.91 112 -12 41 22.64
00 4 0.8 235 32.86 229 53.64 121 -21 20 62.26
00 4 1.2 232 33.71 306 52.56 121 -21 31 41.51
00 8 0.4 215 38.57 314 51.32 109 -9 17 67.92
00 8 0.8 128 63.43 111 82.7 114 -14 5 90.5
00 8 1.2 110 68.5 70 89.1 140 -40 7 86.7

— Thread: 0.137 (weak positive correlation). As the number of threads increase

reduction percentages increase [weakly].

— Interval: 0.66 (strong correlation). As the interval increases reduction per-
centages increase [strongly].

Positive correlation for factors Thread and Interval explain the existence of
the lowest and highest count reduction percentages at points spoofed-SRC: F9,
num-thread: 8, interval: 1.2 and spoofed-SRC: F9, num-thread: 4, interval: 0.4

Finally, we performed a two-tailed Mann-Whitney U test to determine if our
attack succeeded. We compared the counts of Engine-#1 transmitted messages
on the bus before and after the attack were performed. The attack arguments

Practical DoS Attacks on Embedded Networks in Commercial Vehicles 37

Table 5. Non-parametric U-test samples

Identifier | Regular Count from Table | Attack count (F9,4,0.4)
0CF00300 |200 86
0CF00400 | 500 224
18EOFF00 10 4
18EBFF00 | 130 53
18ECFF00 | 12 4
18F00100 | 100 42
18FD7C00 | 10 4
18FDB300 | 20 6
18FDB400 | 20 9
18FEBDO00 | 10 5
18FEC100 | 10 4
18FEDFO00 | 500 203
18FEE000 | 100 36
18FEE400 | 10 5
18FEEEQ0 | 10

18FEEF00 | 20

18FEF000 | 100 45
18FEF100 | 100 35
18FEF200 | 100 40
18FEF500 10 4
18FEF600 | 20 9
18FEF700 10 3
18FEFF00 1 0

were chosen to be from the point which produced the lowest message count
reduction (spoofed-SRC: F9, num-thread: 4, interval: 0.4). The samples for the
U-test are shown in last two columns of Table5. After performing the non-
parametric test, we obtained a p-value of 0.01468 and thereby concluded our
attack produced significant differences (p < .05) in message count at a 5% con-
fidence interval. Since the positive reduction percentages were obtained for all
Engine-#1 message counts, we conclude that our attack was successful. Using
the worst results to perform the significance tests allowed us to have the best
notion about the performance of the attack.

It should be noted that this type of attack could be unintentional since third
party telematics units often request component information from ECUs. While
this is not an attack, a poorly programmed ECU on the network could have the
same effect as shown above.

38 S. Mukherjee et al.

Suggested Mitigation Techniques. One approach to prevent such an over-
loading scenario can be to program the ECU such that it drops incoming request
packets if it has already responded to a request from the same source address
within a pre-defined time interval. This, however, requires ECUs to maintain
state information and can, in turn, lead to further resource exhaustion. Design-
ers or developers can, however, opt for indigenous techniques to defend against
this scenario. Another alternative can be to opt for proper intrusion detection
systems (IDSs) with capabilities of distinguishing such attack traffic from normal
traffic.

4.2 False Request to Send (RTS)

Background Theory. The J1939-21 standard specifies that if multiple RTS
messages are received from the same source address then the most recent RTS
shall be considered and previously received RTSs shall be discarded without
sending a notification to the sender of the RTS message.

Proposed Attack. Consider a connection in progress where the requester
receives an RTS from the recipient (Alice) of a request message. After receiving
the RTS, the requester allocates a buffer having size equal to that received in
bytes 2 and 3 of the data field in the RTS packet (refer to Table 1). The requester
then sends a CTS requesting for given number of packets starting from sequence
number 1. A clever attacker (Bob) can then send a crafted RTS packet (with a
reduced data size in bytes 2 and 3 of the data field) to the requester spoofing
the source address of the original recipient of the request. If the receiver of the
spoofed RTS reallocates the buffer and keeps receiving data (PGN: EB00;g)
packets from the original sender (Alice), the allocated buffer might overflow
causing the ECU firmware to crash.

Execution. To test this attack we used both BeagleBone Black devices con-
nected to our test-bed. On one device (BB1) we ran a faulty script to receive
multi-packet PGNs. The workflow of the program is shown below.

Send request;
In a separate thread:
Sniff for RTS;
On receiving RTS allocate/reallocate
buffer space (buffer size = as obtained
from bytes 2-3 of the RTS data field);
Send CTS;
Recieve data;

On the second BeagleBone Black device (BB2) we ran the attack script as
shown below:

Sniff bus for CTS from attack target;
Send crafted RTS with lesser data size;

Practical DoS Attacks on Embedded Networks in Commercial Vehicles 39

Observation and Analysis. We ran both the scripts on the two BeagleBones
for 10 consecutive occasions. It was observed that on all occasions the script
running on BB1 crashed. This can be fatal for an ECU because crashing the
firmware can render an ECU useless.

Suggested Mitigation Techniques. It is extremely hard to defend against
such attacks. If the ECU firmware developer decides to avoid re-allocating space
on receipt of the second RT'S, the attacker can spoof the first RTS and cause the
exact same damage. The success of this attack can be attributed to two factors:
the exploitable J1939 concept detailed as a part of the background theory and
insufficient programming logic. Thus, according to us, the best defense against
this attack is to avoid allocating space statically using the size specified in the
RTS message. The receiving side can incrementally allocate 7 bytes® as newer
packets arrive.

4.3 Connection Exhaustion

Background Theory. The J1939-21 standard restricts that each pair of ECUs
can have at most one connection at any given point of time. Moreover, J1939
allows requesters to keep connections open by sending CTS messages within a
specified time period.

Proposed Attack. The J1939 source address is an 8 byte field. This means
there can be at most 255 different ECUs connected to a bus. If a driving critical
ECU like a brake controller can support 255 different connections at the same
time, an attacker can open 255 separate connections to that ECU and keep the
connection open by sending periodic CTS messages. In such a case, no other ECU
can open connections to the brake controller. In practice, the actual number of
ECUs connected to the bus is most often much less than 255. This makes the
task easier for the attacker. The quick scan of the network traffic can reveal the
transmitting source addresses. The attacker can then spoof all available source
addresses and open a connection to other ECUs thereby creating a mesh network

of connections. In such a case no other ECU will be able connections to other
ECUs.

Execution. None of the ECUs on our test-bed attempted to make destination
specific connections to each other (refer to Table 3). However, for the purpose of
testing this attack, we programmed BB1 to act as the attacker controlled device
and BB2 to impersonate two different ECUs (Brake Controller (SRC: 0B16) and
Cruise Control (SRC 1114)) and attempt to make connection requests to the
Engine-#1 ECU. The BB1 device was programmed to create two connections
with the Engine-#1 ECU requesting for the Component ID PGN (FEEBjg).
BB1 was run slightly ahead oftime than BB2. This allowed BB1 to create the
two connections with the Engine-#1 ECU.

3 The first byte of a data packet is the sequence number.

40 S. Mukherjee et al.

BB1->Engine-#1 request 00OEA0011 EB FE 00 00 00 00 00 00
Engine-#1->BB1 RTS 18EC1100 10 2C 00 07 FF EB FE 00
BB1->Engine-#1 CTS 00EC0011 11 07 01 FF FF EB FE 00
BB1->Engine-#1 request OOEAOOOB EB FE 00 00 00 00 00 00
Engine-#1->BB1 RTS 18ECOBOO 10 2C 00 07 FF EB FE 00
BB1->Engine-#1 CTS O0OECO00B 11 07 01 FF FF EB FE 00

Engine-#1->BB1 Data Transfer 18EB1100 01 43 4D 4D 4E 53 2A 36
Engine-#1->BB1 Data Transfer 18EB1100 02 43 20 75 30 37 44 30
Engine-#1->BB1 Data Transfer 18EB1100 03 38 33 30 30 30 30 30
Engine-#1->BB1 Data Transfer 18EB1100 04 30 30 2A 30 30 30 30
Engine-#1->BB1 Data Transfer 18EB1100 05 30 30 30 30 2A 78 30
Engine-#1->BB1 Data Transfer 18EB1100 06 36 42 42 42 42 42 42
Engine-#1->BB1 Data Transfer 18EB1100 07 42 2A FF FF FF FF FF
Engine-#1->BB1 Data Transfer 18EBOBOO 01 43 4D 4D 4E 53 2A 36
Engine-#1->BB1 Data Transfer 18EBOBOO 02 43 20 75 30 37 44 30
Engine-#1->BB1 Data Transfer 18EBOBOO 03 38 33 30 30 30 30 30
Engine-#1->BB1 Data Transfer 18EBOBOO 04 30 30 2A 30 30 30 30
Engine-#1->BB1 Data Transfer 18EBOBOO 05 30 30 30 30 2A 78 30
Engine-#1->BB1 Data Transfer 18EBOBOO 06 36 42 42 42 42 42 42
Engine-#1->BB1 Data Transfer 18EBOBOO 07 42 2A FF FF FF FF FF

BB2->Engine-#1 request 00EA0011 EC FE 00 00 00 00 00 00
BB2->Engine-#1 request OOEAO0OOB EC FE 00 00 00 00 00 00
BB2->Engine-#1 request OOEA0O011 EC FE 00 00 00 00 00 00
BB2->Engine-#1 request OOEAO00OB EC FE 00 00 00 00 00 00
BB2->Engine-#1 request 0OEA0011 EC FE 00 00 00 00 00 00
BB2->Engine-#1 request OOEAOOOB EC FE 00 00 00 00 00 00
BB2->Engine-#1 request 00EA0011 EC FE 00 00 00 00 00 00
BB2->Engine-#1 request OOEAOOOB EC FE 00 00 00 00 00 00
BB1->Engine-#1 CTS 00EC0011 11 07 01 FF FF EB FE 00
BB1->Engine-#1 CTS OOECO00B 11 07 01 FF FF EB FE 00

Fig. 8. Connection exhaustion network trace (without end of message ACK)

Observation and Analysis. Figure8 shows the network trace obtained from
the CAN bus during the runtime of the attack. It can be seen that BB1 makes
two connections in the beginning by sending a request, RTS and CTS packet for
source addresses 1114 and 0B14. The Engine-#1 ECU then transfers data to BB1.
After sometime BB2 attempts to make two connections to the Engine-#1 ECU.
For the purpose of this experiment, BB2 acts as the honest party(s). However,
BB2 never receives RT'S messages from the Engine ECU. At the end of the trace,
it can be seen that BB1 keeps its connection open by sending periodic CTSs.
As a result, any further connection attempts from BB2 would also be discarded
leaving BB2 (acting as the Brake controller and Cruise Control device) starving
for the required PGN.

Mitigation Techniques. The following attack can have serious consequences
on regular J1939 communications. This because, J1939 allows exchange of

Practical DoS Attacks on Embedded Networks in Commercial Vehicles 41

multi-packet proprietary messages. Disrupting exchange of all multi-packet mes-
sages can hamper proprietary message exchange. Authenticating the sending
ECU can help in preventing this type of a scenario from happening.

5 Conclusion and Future Work

The J1939 standards are used extensively in commercial vehicles and industrial
automation technology. The J1939 protocols run above the CAN bus. Although
multiple research efforts have focused on discussing vulnerabilities in the CAN
protocol, we believe this is the first work aimed at attacking the J1939 protocol
specifications. We illustrated how attacks similar to those performed on the
ISO/0OSI protocol stack can be performed by a malicious adversary on J1939
protocols. Specifically, we demonstrated three specific denial-of-service attacks
using the J1939 data-link layer request and connection management protocols.

Our future work includes uncovering new forms of attacks on the J1939
protocols. A major challenge is providing acceptable security solutions for such
attacks. The attacks and the mitigating security solutions will be tested out
in real-world scenarios to demonstrate their efficacy. We also plan to evaluate
various security solutions in terms of their efficacy, resource utilization, usability,
and cost. We will also explore trade-offs among proposed security solutions and
provide recommendations for best practices.

Acknowledgments. This research was partially supported by the National Science
Foundation under Grant No. 1619641 and Grant No. 1619690.

References

1. Bosch, R.: CAN specification version 2.0. Rober Bosch GmbH, Postfach 300240
(1991)

2. Burakova, Y., Hass, B., Millar, L., Weimerskirch, A.: Truck hacking: an experimen-
tal analysis of the SAE J1939 standard. In: 10th USENIX Workshop on Offensive
Technologies (WOOT 2016) (2016)

3. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T., et al.: Comprehensive experi-
mental analyses of automotive attack surfaces. In: USENIX Security Symposium,
San Francisco (2011)

4. Hoppe, T., Kiltz, S., Dittmann, J.: Security threats to automotive CAN networks
— practical examples and selected short-term countermeasures. In: Harrison, M.D.,
Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 235-248. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-87698-4_21

5. Kleine-Budde, M.: SocketCAN-the official CAN API of the Linux kernel. In: Pro-
ceedings of the 13th International CAN Conference (iCC 2012), Hambach Castle,
Germany CiA, pp. 05-17 (2012)

6. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., et al.: Experimental security analysis
of a modern automobile. In: 2010 IEEE Symposium on Security and Privacy, pp.
447-462. IEEE (2010)

http://dx.doi.org/10.1007/978-3-540-87698-4_21

42

10.

11.

12.

13.

S. Mukherjee et al.

. Linux-CAN, SocketCAN user space applications: Can-utils. https://github.com/

linux-can/can-utils

. Miller, C., Valasek, C.: A survey of remote automotive attack surfaces. Black Hat

USA (2014)

. Society of Automotive Engineers: serial control and communications heavy duty

vehicle network - top level document (2013). http://standards.sae.org/j1939-
201308

Society of Automotive Engineers: Data link layer (2015). http://standards.sae.org/
j1939/21.201504

Society of Automotive Engineers: J1939 Digital Annex (2015). http://standards.
sae.org/j1939da-201510/

Studnia, I., Nicomette, V., Alata, E., Deswarte, Y., Kaaniche, M., Laarouchi, Y.:
Survey on security threats and protection mechanisms in embedded automotive
networks. In: 43rd Annual IEEE/IFIP Conference on Dependable Systems and
Networks Workshop (DSN-W), pp. 1-12. IEEE (2013)

Wolf, M., Weimerskirch, A., Paar, C.: Security in automotive bus systems. In:
Workshop on Embedded Security in Cars (2004)

https://github.com/linux-can/can-utils
https://github.com/linux-can/can-utils
http://standards.sae.org/j1939_201308
http://standards.sae.org/j1939_201308
http://standards.sae.org/j1939/21_201504
http://standards.sae.org/j1939/21_201504
http://standards.sae.org/j1939da_201510/
http://standards.sae.org/j1939da_201510/

2 Springer
http://www.springer.com/978-3-319-49805-8

Information Systems Security

12th International Conference, ICISS 2016, Jaipur, India,
December 16-20, 2016, Proceedings

Ray, l.; Gaur, M.5.; Conti, M.; Sanghi, D.; Kamakoti, V.
(Eds.)

2016, XV, 544 p. 134 illus., Softcover

ISBM: 978-3-319-49805-8

	Practical DoS Attacks on Embedded Networks in Commercial Vehicles
	1 Introduction and Previous Efforts
	2 Background
	2.1 The Physical (CAN) Layer
	2.2 J1939 Packet Formatting
	2.3 Message Transmission Rates
	2.4 J1939 Data-Link Layer

	3 Preliminaries
	3.1 Threat Model
	3.2 Attack Categorization
	3.3 Experiment Test-Bed

	4 Attacks
	4.1 Request Overload
	4.2 False Request to Send (RTS)
	4.3 Connection Exhaustion

	5 Conclusion and Future Work
	References

